TSIPP Workbench - Working
Widgets Without Code

Paul Welton
Nortel Networks
PO Box 3511, Station C
Ottawa, Ontario
K1Y 4H7
pdw@nortelnetworks.com

Abstract

This submission describes an interactive tool for 3D/4D
drawing named the “TSIPP Workbench”. It is based on,
and derives its name from, the established Tcl extension
TSIPP, a 3-D image specification and rendering toolkit for
use with Tcl and Tk developed by Mark Diekhans,
described in “TCL/TK TOOLS” [ref. 1]. The main goal of
TSIPP is visualization; the understanding of data in sci-
ence or engineering. To do this many calls to routines in
the Toolkit are needed to construct a scene, with dimen-
sions and positions of each component being passed in as
numerical values. This can be a laborious task, and an
interactive tool is particularly appropriate here, where the
objective is a visual image, and immediate feedback on
the appearance is invaluable. The TSIPP Workbench
makes it possible to create 3-D images through interactive
drawing, and encapsulate them as widgets which appear
as visual scenes with photographic realism which can vary
with time (animation) or other control stimulus. During an
interactive session, the image of the widget is defined, as
well as the methods to be supported and their effect on the
image. These widgets can then be used to create graphi-
cal applications with minimal code.

The animation of the image encompasses more than just
movements of the objects in the scene. Camera positions,
positions of light sources, and the intensity and character-
istics of the image can all be controlled by methods of the
widget.

Implementation has followed the “Tcl Style Guide” [ref. 3]
and the recommendations on “Namespace and Package
Use” [ref. 4].

1 Features

The objective of the TSIPP Workbench is to give the user
easy and productive access to all of the features of TSIPP.

1.1 Orthogonal Views

While 3-D drawing on a computer may appear difficult, 2-D
drawing is a familiar extension to word processing pack-

8th Annual Tcl/Tk Conference
May 30, 2001 10:34 pm

1

ages. The GUI of the TSIPP Workbench presents three
orthogonal 2-D views of the scene representing elevation,
plan and side views. Behavior in the three orthogonal
views resembles conventional 2-D drawing tools, except
that they are linked together, and always remain consis-
tent. When a selected object is moved by the user forward
in the plan view for example, the object will be moved in
the side view in sympathy.

Three types of manipulation of selected components are
supported: movement, resizing and rotation. The three
operations can be applied in an arbitrary order. Figure 2 on
page 2 shows an example view of a plate-like cuboid
which has been rotated slightly in each of the three views.

1.1.1 Resizing

Resizing of a selected object is invoked by dragging the
mouse with M1 depressed on “handles” attached to each
vertex (vertex of a bounding cuboid in the case of the ellip-
soid). The motion is constrained in a manner appropriate
for the type of component.

For cuboids , when one vertex is moved, the adjacent ver-
tices must move so that the object remains a cuboid, with
perpendicular faces.

For spotlights and cameras , the representation in each
canvas is constrained to be an isosceles triangle, with the
object located at the vertex opposite the side of unequal
length. Manipulation is limited as shown in figure 1 below.
Any further degree of freedom of motion would only gener-
ate confusion for the user, as it would convey the impres-
sion that the underlying TSIPP object has parameters
other than position, orientation and “divergence”, the
degree of spread of the beam or field of view.

Figure 1. Constrained Movement of Spot-
lights and Cameras

The handle at the vertex at which the object is located, and
an additional handle at the centre of the opposite side can
be dragged arbitrarily, and the triangle remains fixed at the

TSIPP Work Bench - Working Widgets Without Code

Issue 1.J

Figure 2. Linked Orthogonal Views in the MultiView Widget

Front Wiew

[[

Plan Wiew

other such vertex. The remaining two handles control the
divergence only, and can only revolve about the object,
with their motion locked together so that they cannot
affect the orientation of the object.

As a consequence of the constraints in handle motion,
the handle does not necessarily follow the mouse pointer.

1.1.2 Rotation

Rotation of Cuboid and Cylinder objects is invoked by
dragging the mouse with M3 depressed on a handle at a
vertex. The Component will be rotated about an arbitrary
centre of rotation, if this has been defined by user com-
mand, or if not, about an implicit centre having each coor-
dinate equal to the mean of the corresponding
coordinates of all the vertices.

8th Annual Tcl/Tk Conference
May 30, 2001 10:34 pm

X

LA

Side Wiew

1.1.3 Movement

Movement of all selected objects is invoked by dragging
the mouse with M3 depressed on the canvas back-
ground.

1.1.4 Avoiding loss of accuracy through
guantization to pixel resolution

When an object is created, each vertex will have coordi-
nates that are an integral number of pixel units. On rota-
tion, the handle that is dragged will be moved to another
location with the same constraint, but this will usually
imply that the other handles should be moved to a loca-
tion with non-integral coordinates. If this was approxi-
mated by rounding to the nearest pixel, then a series of
rotations would result in unacceptable cumulative errors.
Keeping soft copies of the coordinates in floating-point
format is not desirable, as the implementation of the
“movement” manipulation (see section 1.1.3 above) is
implemented using the ability of the canvas widget to

TSIPP Work Bench - Working Widgets Without Code

Issue 1.J

move whole groups of items, so that the real coordinates
would become inconsistent with the soft coordinates.

The solution is to maintain the error differences between
the pixel coordinates and the accurate indices. When
resizing or rendering is to take place, the error differences
and the current pixel coordinates are combined. When the
operation is complete the error differences are recovered.

1.2 Saving the state of the Tool and
Work in Progress

The state of the TSIPP Workbench can be saved as a
plain-text incr-Tcl source file, which may be reloaded to
restore the state of the tool. This Tcl source file can be
thought of as the “source” for the image. As a human read-
able incr-Tcl program it provides the potential for interfac-
ing to other image processing systems, or of implementing
recovery from tool problems which make the file unread-
able, which would be significantly more difficult if the
image source was in binary format.

1.3 Defining Colors and Textures

A custom widget is provided for defining colors and tex-
tures. TSIPP provides a range of shader types, which
define the color and texture of objects. The colors are
modified using a color wheel taken from “Effective Tcl/Tk
Programming” [ref. 2]. The GUI options are customized for
the shader type selected, since some shaders require mul-
tiple colors and each has a different set of parameters.

1.4 Animation

Animation of the scene is achieved by defining two or more
reference frames, and allowing the tool to interpolate and
then render a sufficient series of intermediate frames for
smooth motion. The frames may differ in terms of the posi-
tion of objects in the scene, camera position and orienta-
tion, and the characteristics of the light sources. Thus the
methods of the widget may show objects heating up and
cooling down for example.

When a reference frame has been defined and rendered,
the “fix” button is used to store that image in the
“frameStore”, a data structure indexed by frame number.
This contains a copy of the set of public variables of each
of the objects overlaying one of the TSIPP objects in the
scene, and a copy of the coordinates of the representation
of the component in each orthogonal view. Thus it is a two
dimensional structure indexed by “frame number” and
“parameter name”.

When the tool interpolates a particular frame, it applies the
interpolation algorithm in turn to each “parameter name”
represented in the frameStore. The parameters may be
numerical values, textual values such as Shader type, or
lists of either of these scalar values, extending to an arbi-

8th Annual Tcl/Tk Conference
May 30, 2001 10:34 pm

3

trary degrees of lists-of-lists. For example, the Wood
Shader contains a list of two colors, each of which is a list

of hsb? values. Textual parameters, such as Shader type
must not change between reference frames, but numerical
values embedded in lists may change. Interpolation is per-
formed for each parameter by testing it against each of the
following cases in turn and using the first one that applies:

« If the reference point values are identical, then the
interpolated value is the common value for the ref-
erence points.

* If the reference point values are lists, then the inter-
polated value is a list of the results of applying the
algorithm recursively to each element in turn.

« If the reference point value is not a list then it is
interpreted numerically. At present, only linear
interpolation between the two closest points is
available, but it is intended to add polynomial fit to a
larger number of reference frames, and the option
to link in a custom algorithm. Suppose the frame
numbers of the reference frames are ry and r4, and
the values at these points are vy and v, respec-
tively, then the interpolated value, v for frame r
would be:

V=(vo*(rg-n+vy*(r-rg)/(ry-ro)

The result of the interpolation process depends on how
the parameter is represented. For example, the fact that a
color is represented in HSB rather than RGB format
means that changing from pure BLUE to pure RED pro-
ceeds via GREEN and maintains full saturation; while with
RGB representation it would proceed via magenta. Similar
choices arise with positional information. If the angle of a
block is interpolated, this results in rotational motion, while
if the coordinates of the vertices are interpolated then this
results in the block deforming when moving between the
reference states.

1.5 Automatic Rendering

When this feature is turned on, any button or mouse event
will cause the image to be rendered. Double-buffering of
the image is used so that the image being rendered is not
made visible unless the rendering completes. Any mouse
or button event occurring before rendering completes
aborts the rendering and initiates a fresh attempt, which
will, if it completes, reflect any change to the image which
has been made. To the user, the effect approximates to the
rendered image tracking any editing done in the multiView,
although there will be a noticeable delay. TSIPP offers four
levels of rendering algorithm, trading rendering time
against quality of image. Automatic Rendering is most

1. hue, saturation and brightness.

TSIPP Work Bench - Working Widgets Without Code

Issue 1.J

useful with the “LINE” rendering algorithm, which is the
fastest.

If any error occurs, the “bgerror” procedure has been
wrapped so as to cancel the Automatic Rendering mode.
This is necessary because otherwise an infinite loop may
develop in which any attempt to exit from the dialog
entered on an error may trigger a rendering attempt and a
further error.

2 Class Structure

The incr-Tcl classes used for this program fall into four
groups:

* Megawidgets, representing a function of the pro-
gram as well as representing an area of the visible
GUI;

e Classes overlaying TSIPP objects. These form a
hierarchy of which class Component is the root,
and the most specific classes correspond to TSIPP
objects.

* Classes associated with RLE files which are used
in both the TSIPPwb program and the widgets that
it generates for use in other applications.

« Utility classes, such as “DeepCopy”.

The relationship between these classes can be seen in fig-
ure 3 on page 5. The remainder of this section describes
the classes in more detail.

2.1 Megawidgets
The TSIPPwb program is partitioned into a small number
of mega-widgets® with two objectives:

« A highly structured program results with low cou-
pling between modules.

« The megawidgets are fully defined in their own
terms and may be reused in other applications.

The top-level layout of mega-widgets is shown in figure 4
on page 6.

2.1.1 MultiView

An object of this class is a widget to support interactive
editing of 3D images, based on entry of information in
orthogonal views.

1. Currently they are not actually Mega Widgets
in the iTk sense - this is being worked on.

8th Annual Tcl/Tk Conference
May 30, 2001 10:34 pm

4

A single instance “.v" is created. Objects of all classes,
including Component and its specializations refer to this
name. The public view of this class is described in more
detail in section 3 on page 7.

2.1.2 VisualEdit

Several component types supported by TSIPP have simi-
lar sets of properties which need to be configured. These
include the many different “Shaders” and “Light Sources”
which are available, each requiring one or more colors to
be defined together with a number of miscellaneous
parameters, which are each either floating point values or
enumerated types. An object of class VisualEdit is a wid-
get to support the editing of these TSIPP objects.

All component types to be edited with the VisualEdit wid-
get are overlaid by a specialization of the class “Visual”,
which is itself a specialization of the class Component.
The VisualEdit widget is not explicitly aware of the nature
of the specializations, so that in principal, a new variant
such as “DirectedLight” which is not presently supported,
could be added as another specialization of Visual, and
the VisualEdit widget would provide custom editing sup-
port for it without modification.

The MultiView widget creates a single instance of a Visu-
alEdit widget with a pathname that is not available outside
of the MultiView widget. The VisualEdit widget can be
referred to outside using the method named “visu-
alEditEval”. The public view of the class VisualEdit is
described in more detail in section 4 on page 9.

2.1.3 GlobalEdit

This custom widget allows global options, file access and
operations on selected objects to be controlled. A single
instance “.g” is created. Objects of all classes, including
Component and its specializations refer to this name.

2.1.4 MotionEdit

This custom widget allows the animation of the scene to
be controlled. The tool can be placed in a “record” mode in
which each frame of the animated scene is rendered and
written to an RLE file, or into playback mode in which the
resulting RLE file is displayed frame-by-frame. This widget
is also used to revisit existing reference frames, delete
them or to define new reference frames.

A MultiView widget creates a single instance of a
MotionEdit widget with a pathname that is not available
outside of the MultiView widget. No objects other than “.v”
refer to it, and in fact, it has no public methods or procs.

2.2 Classes overlaying TSIPP objects

Each TSIPP object is overlaid by an object of class Com-
ponent, described more fully in section 5 on page 10. The

TSIPP Work Bench - Working Widgets Without Code

Issue 1.J

Figure 3. Class Diagram

|
GlobalEdit MultiView E DeepCopy
| Utilities
& e e
|
‘ i Classes overlaying
i TSIPP components
MotionEdit VisualEdit E Animation ___| Component
:
Megawidgets E
___________ e e
-
|
RLE_ || Shadeable Visual
controller |
|
|
|
|
-
|
RLE_player|i | Rotatable Ellipsoid Shader Directed Light
: Triangle
|
|
| A
|
RLE_ !
animate .
E StdCamera SpotLight
RLE utilities | Cuboid ShaderBasic
also used in | Cylinder ShaderWoo
applications | PointLight
PP | Shader ... g
|
8th Annual Tcl/Tk Conference TSIPP Work Bench - Working Widgets Without Code

May 30, 2001 10:34 pm Issue 1.J

Figure 4. Widget Hierarchy

GlobalEdit (.g) MultiView (.v)
VisualEdit
= | !
: _' MotionEdit
== |
||_||: - -I
: [= - [)

collection of Components comprising the stationary pic-
ture or an animation that is being edited are overlaid by
an object of class Animation. A MultiView widget creates
and manages an object of class Animation with a fixed

name “c” which is known publiclyl.
2.3 RLE File Managers

2.3.1 RLE_player

This is the most basic object overlaying an RLE file. An
object of this class would normally be used in any appli-
cation incorporating a widget generated using the TSIPP
Workbench.

1. This implies that at present, only one MultiV-
iew widget can be created.

8th Annual Tcl/Tk Conference
May 30, 2001 10:34 pm

2.3.2 RLE_controller

This object is a GUI to control an RLE_player object
which it owns. An object of this class is used inside of the
MotionEdit object of the TSIPP Workbench, but can also
be used in standalone applications.

2.3.3 RLE_animate

An RLE_player that loads all images from the RLE file
into separate photo widgets. This potentially allows faster
random access to frames compared with serial reading of
an RLE file. In practice, access to sequential frames is
slower. Since the number of frames that can be loaded in
this way is constrained by the memory available, this
approach has limited application.

TSIPP Work Bench - Working Widgets Without Code

Issue 1.J

2.4 Utilities

2.4.1 DeepCopy

Objects inheriting this class may call putObject to write
code to a file that when executed, will recreate the object.

3 Class MultiView

In this section, a more in-depth description is given of the
public interface to objects of this class

This widget resembles a conventional widget in that it is
created by the command “multiView <win>", but an inte-
grated Mega-widget is not created - an object <win> of
class MultiView is created but the widget name has the
suffix “_win” added. The extended name is returned by the
command and should be referenced in pack or grid com-
mands, while the original name is used to access the spe-
cific MultiView methods.

3.1 Public Methods

3.1.1 additemBindings

This method adds bindings for M1 and M3 mouse-press
events to the representation of the component with a spec-
ified tag in a specified canvas of the MultiView widget.

Arguments:

canvas - the canvas on which the bindings are to be
created.

tag - the tag identifying the item to which the binding
should be applied.

Results: No return value.

3.1.2 skipCanvasBindings

This method is typically used by an item binding in a can-
vas of a MultiView object that wishes to suppress any can-
vas binding that may also be invoked. It is analogous to
using a “break” command in a binding script to suppress
further processing of the binding tags. However, using
break in an item binding does not suppress widget bind-
ings.

Arguments:

canvas - the canvas on which the bindings are to be
suppressed.

Results: No return value.

8th Annual Tcl/Tk Conference
May 30, 2001 10:34 pm

3.1.3 transform2d3d

This method is used in the construction of binding scripts
to be used in a binding for a canvas of a MultiView widget,
or an item in such a canvas. Suppose that the binding is to
invoke a method which takes 3D coordinates; X, y, z as
arguments. Two of those coordinates can be obtained from
the standard binding substitutions %x and %y, while the
third is indeterminate. The mapping between %x, %y and
the indeterminate value depends on the canvas. This
method returns the list of three elements, {%x %y *} per-
muted so that so that the substituted values are mapped to
the correct arguments, and “*” is passed to the indetermi-
nate argument.

Arguments:

canvas - the canvas to which the 2D coordinates
relate.

Results: Returns {%x %y *}, permuted appropriately.

3.1.4 visualEditEval

A MultiView object contains an embedded widget of class
VisualEdit. The pathname of this widget is not known pub-
licly, but the embedded VisualEdit widget may be asked to
execute methods using this method of the MultiView that
owns it. “.v visualEditEval <method> <args>" is equivalent
to “<name of VisualEdit> <method> <args>".

Arguments:

args - the command and arguments which the
embedded VisualEdit widget is to perform.

Results: The result of the supplied command.

3.1.5 clearSelection

This method deselects all selected items in all canvases.
Arguments: None.

Results: No return value.

3.1.6 safeSource

To reload a source file, it must be sourced from within the
MultiView object so that it can use variables, such as those
holding the canvas pathnames. In addition, it is valuable to
source the file completely, even if such commands fail.
This will allow backwards compatibility with old source files
that, for example, attempt to configure variables that no
longer exist.

This method is equivalent to invoking the standard source
procedure within the context of the object (so that it can

TSIPP Work Bench - Working Widgets Without Code

Issue 1.J

access public and private variables of the object directly),
except that if any of the commands result in an error then
the error message is written out but the source command
is not aborted. Note: this procedure is not related to “safe
interpreters”.

Arguments:

filename - name of a file containing Tcl source code
which will reconstruct the MultiView to a former
state.

Results: No return value.

3.1.7 setAutoRender

This method is used to turn the “auto-rendering” feature on
or off. See section 1.5 on page 3.

Arguments:

autoRender - new state of this option, which may be
“Off" Or llonﬁ.

Results: No return value.

3.1.8 Operations on Selected Objects

The following public methods perform operations on the
objects of class Component which are represented as
“selected” in the MultiView object.

3.1.9 setMotionMode

The motion mode for all selected objects are set to the
selected value, unless “various” is selected, in which case
the settings are not changed.

Arguments: None.

Results: No return value.

3.1.10 commonMotionMode

This method is invoked whenever the selection is reduced,
in which case it is necessary to scan all remaining
selected objects. If the existing motionMode is “various”
then it may become an explicit value as a result of the
deletion. If there are no remaining selected items, then the
state of the motionMode is regarded as disabled.

Arguments:
pState - Name of a variable in the context of the caller

which will be set to “disabled” if there are no
selected items, and “normal” otherwise.

8th Annual Tcl/Tk Conference
May 30, 2001 10:34 pm

8

pValue - Name of a variable in the context of the caller
which will be set to the common motion mode of
all of the selected items, or “various” if there is a
mixture.

Results: No return value.

3.1.11 deleteSelected

This method causes all selected items, associated han-
dles, and the associated objects of class Component to be
deleted. A check is made for any items which are tagged
“noCasualDeletion”, and if this is found, then an error
results and no items are deleted. This tag is used for the
component StdCamera.

Arguments: None.

Results: No return value.

3.2 Public Procs

3.2.1 getCanvasVariables

This proc returns the constant list {Front Plan Side} of the
names of public variables which contain the pathnames of
each canvas. The reason for returning the names of the
variables rather than the pathnames themselves is that
this routine is called by routines which write out the source
files for the animation being edited. It is desirable that
these source files can be sourced by any object of class
MultiView, which may have a different pathname from that
of the MultiView object that created the file. Therefore, the
file should contain the variable nhames only, not the path-
names. As the variables are public, they can of course be
de-referenced with the standard method “cget”.

3.3 Public Data

3.3.1 Front, Plan, Side, Perspective

These public variables contain the pathnames of the
respective canvas widgets within the MultiView object.
3.3.2 canvasMargin

This public variable specifies the margin in pixels which is
left around canvas items when a canvas is automatically
resized in pixels, and defaults to 100.

3.4 Behavior

In this section the behavior of the widget, as defined with
bindings for various events is specified.

TSIPP Work Bench - Working Widgets Without Code

Issue 1.J

3.4.1 Canvas

On creation, the following bindings are created in each
canvas:

Button-1 - If the mode selected in the associated Glo-
balEdit widget (.g) is “select”, then a “rubber-
band selection” mode is entered, in which a rect-
angle can be dragged with the mouse, and on
release, all fully enclosed items will be selected
in addition to any existing selection. The “rubber-
band selection” is maintained as a rectangle with
one vertex at the initial pointer coordinates, and
the opposite vertex tracking the mouse coordi-
nates.

In any other mode, an item corresponding to that
mode is created. The new item is selected, and
items already selected are deselected. The new
item may be resized in the same way as a
selected item in select mode.

Button-3 - All selected items are dragged with the
mouse.

3.4.2 Allltems

When addltemBindings is called, the following bindings
are created for the item. They take precedence over the
canvas bindings described above.

ButtonPress-1 - If the mode selected in the associ-
ated GlobalEdit widget (.g) is “select”, then all
currently selected items are deselected, and then
the item to which the mouse is pointing is
selected.

ButtonPress-3 - If the mode selected in the associ-
ated GlobalEdit widget (.g) is “select”, then the
selection state of the item to which the mouse is
pointing is toggled; i.e. it becomes selected if it
was formerly deselected, and vice-versa.

3.4.3 Selected Items

When a component is selected the following bindings are
created for the handles. They take precedence over the
canvas bindings and the item bindings described above.

Button-1 - The handle may be dragged with the
mouse to re-dimension the component. The
effect on the other handles is dependent on the
component type.

Button-3 - For items that support rotation, the Com-
ponent will be rotated about its centre of rotation,
if defined, or if not, about an implicit centre with

8th Annual Tcl/Tk Conference
May 30, 2001 10:34 pm

9

each coordinate equal to the mean of the corre-
sponding coordinates of each vertex.

4 Class VisualEdit

4.1 Public Methods

4.1.1 add

This method adds the name of a specified object to the
scrolled listbox of Visual objects.

Arguments:
visual - Name of an object of class Visual.

Results: No return value.

4.1.2 remove

This method removes a specified item from the listbox,
and if this is the selected item, then the entry widgets of
the VisualEdit are disabled.

Arguments:
visual - Name of an object of class Visual.

Results: No return value.

4.1.3 select

This method forces the selection in the scrolled listbox to
the specified visual, and updates the colordial subwidget
to reflect the settings of the current visual. This procedure
is called when a single component is selected in one of the
orthogonal views, and this is the visual associated with it
to be selected here.

Arguments:
visual - Name of an object of class Visual.
Results: No return value.

4.1.4 currentSelection

This method returns the identity of the object currently
selected by the scrolled listbox of Visual objects.

Arguments: none.

Results: returns the name of the object currently being
edited.

TSIPP Work Bench - Working Widgets Without Code

Issue 1.J

4.1.5 setColorTargets

This method is used to configure the names of the colors
used for the particular Visual being edited. For example,
the “Wood Shader” requires two colors; “base” and “ring”.

Arguments:
IColors - list of color identifiers.
Results: No return value.

4.1.6 visualToColorDial

This method updates the ColorDial to reflect the selected
Visual.

Arguments: None.

Results: No return value.

4.1.7 visualToAttributeEntries

This method is a more comprehensive version of the previ-
ous method which updates all widgets within the Visu-
alEdit widget to reflect the selected Visual.

Arguments: None.

Results: No return value.

5 Component

Each TSIPP object is overlaid by an object of class Com-
ponent, or a specialization.

5.1 Public Methods

5.1.1 File Transfer

putObject - writes itself to a specified file pointer. The code
generated consists of calls to one of the following:

addRotationCentre - adds an indicator to rotatable
objects to indicate the position about which they
will rotate.

components - makes the Component owned by the
master animation.

configure - loads scalar variables of the Component.

coordStore_Load - loads data into the coordinate
store. The coordinate store is part of the
frameStore, but is used to restore the Multiview
displays rather than public variables of the Com-
ponent.

8th Annual Tcl/Tk Conference
May 30, 2001 10:34 pm

10

display - displays the object in each canvas of the
MultiView with the same appearance as it had
when it was saved.

error_load - loads data into the error vectors.
frameStore_Load - loads data into the frameStore.

lower - StdCamera is lowered in each view that it is
represented, as it is represented by a filled item
and would obscure other items if left on top.

5.1.2 FrameStore Operations

framePut - stores the current state for a specified frame.
frameGet - recovers the state for a specified frame.
framelnterpolate - compute the state for a specified frame.
frameForget - forget the state for a specified frame.

frameSearch - look for a remembered frame, from a speci-
fied starting position in a specified direction.

frameExists - return whether the state is known for a cer-
tain frame.

5.1.3 Canvas Operations

offCanvasSelect - This default method does nothing, but in
specializations it performs the actions necessary when the
component is selected, other than those actions specific to
individual canvases of the MultiView widget.

display - draw the object on a specified canvas.
defaultDisplay - create the initial display of an object.
addRotationCentre -

activateRotationCentre - used by action procedures of wid-
getsin “.g".

select - adds handles to all vertices of the representation
of this component in the specified canvas and
makes it appear to be selected.

deselect - removes handles from all vertices of the repre-
sentation of this component in the specified can-
vas and returns it appearance to an unselected
state.

5.1.4 3D image Creation

multiView_to_TSIPP - creates the parameters required by
TSIPP to create objects from the canvas repre-
sentations in the MultiView and the VisualEditor.

TSIPP Work Bench - Working Widgets Without Code

Issue 1.J

construct - call the TSIPP primitives to create the object
using the current TSIPP parameters.

5.2 Public Procs

windowToCanvas - Canvas utility for converting between
coordinates of the visible area, and coordinates
of the canvas.

mouseStart - Utility for noting the current mouse coordi-
nates.

mouseRelative - Returns the change in mouse coordi-
nates since the last call to mouseStart or
mouseRelative.

5.3 Public Data

5.3.1 motionMode

The value of this variable defines how the motion of the
object will be interpolated, and must be one of the follow-

ing:

Linear - Each value is found by linear interpolation of
the two closest points to the frame number being
interpolated.

Rotate in Front/Plan/Side - Each value is interpo-
lated so that it describes a point moving in a cir-
cle about the centre of rotation at a constant
velocity.

6 Summary of Work Done

The TSIPP Workbench has been implemented as an incr-
Tcl program which demonstrates the generation of 3D ren-
dered drawings, and of animating them. The full capabili-
ties of TSIPP are not yet fully accessible; only blocks,
cylinders, ellipsoids and either PointLights or SpotLights
are available at present. However with this limited palette,
several effective and realistic animations have been cre-
ated in the form of an RLE! file. A widget template is avail-
able to allow the animation to be used as a widget in
another Tk application. The widget may be commanded to
display a particular frame or to “play” the animation.

7 Software

You may access the software from the Tcl Contributed
Sources Archive:

1. Run-Length Encoding. This is the multi-frame
storage format used by the Utah Raster Tool-
kit, provided as part of TSIPP.

8th Annual Tcl/Tk Conference
May 30, 2001 10:34 pm

11

http://www.NeoSoft.com/tcl/ftparchive/
sorted/graphics/TSIPPwb

At the time of writing, version 1.3 is the latest available.

As the TSIPP Workbench has dependencies on many
packages, complete binaries have been provided (for the
Linux Operating System only).

Please refer to the README file, and the HTML documen-
tation html/index.html and in particular to the list of
known deficiencies in html/knownProblems.html

8 Conclusion

The power of the TSIPP 3-D image specification and ren-
dering toolkit can be appreciated far more readily through
a point-and-click GUI than through the Tcl command inter-
face directly. Incr-Tcl provides the means to implement
such a GUI rapidly and effectively.

Smooth motion animation has heavy requirements for both
CPU power and disk storage capacity. With the TSIPP
Workbench, the images are pre-rendered and written to
disk. Today, there will be many applications where scenic
widgets are desirable, but the computer resources are
either not available or not justified. However, it must be
remembered that during the last 20 years, the computers
available to the public for home or business use have
increased in disk capacity from 10 MByte to 10 GByte, and
CPU speeds from 1 MHz to 1 GHz. Although this rate of
progress may not be continued, applications development
must not underestimate future capabilities which may
make 3D animation commonplace.

9 References

[1] “TCL/TK TOOLS”, Mark Harrison and other contribu-
tors, O'Reilly, 1997, ISBN 1-56592-218-2.

[2] “Effective Tcl/Tk Programming”, Mark Harrison,
Michael McLennan, Addison Wesley Longman, 1997,
ISBN: 0-201-63474-0.

[3] “Tcl Style Guide”, Ray Johnson, Sun Microsystems,
Inc., August 22nd, 1997.

[4] “Namespaces and Packages”, William H Duquette,
2000.

TSIPP Work Bench - Working Widgets Without Code

Issue 1.J

	TSIPP Workbench - Working Widgets Without Code
	1 Features
	1.1 Orthogonal Views
	Figure 1. Constrained Movement of Spotlights and Cameras

	1.2 Saving the state of the Tool and Work in Progress
	1.3 Defining Colors and Textures
	1.4 Animation
	1.5 Automatic Rendering

	2 Class Structure
	2.1 Megawidgets
	2.2 Classes overlaying TSIPP objects
	2.3 RLE File Managers
	2.4 Utilities

	3 Class MultiView
	3.1 Public Methods
	3.2 Public Procs
	3.3 Public Data
	3.4 Behavior

	4 Class VisualEdit
	4.1 Public Methods

	5 Component
	5.1 Public Methods
	5.2 Public Procs
	5.3 Public Data

	6 Summary of Work Done
	7 Software
	8 Conclusion
	9 References
	Figure 2. Linked Orthogonal Views in the MultiView Widget
	Figure 3. Class Diagram
	Figure 4. Widget Hierarchy

